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Abstract. We use a constrained Monte Carlo technique to analyse ultrametric features of a
four-dimensional Edwards–Anderson spin glass with quenched couplingsJ = ±1. We find that
in the large volume limit an ultrametric structure emerges quite clearly in the overlap of typical
equilibrium configurations.

The hierarchical solution [1] of mean-field spin glasses [2] introduces a large number of
new features. ForT < TSG, in the broken phase, there are many stable equilibrium
states, not related by a simple symmetry group (such asZ2 in the normal Ising model).
These states exhibit an ultrametric structure: their distance satisfies an inequality stronger
than the triangular inequality,d1,3 6 d1,2 + d2,3, the ultrametric inequality, stating that
d1,3 6 max(d1,2, d2,3). The existence of a phase transition even in a non-zero magnetic field
(de Almeida–Thouless line) and of a complex dynamics, with aging phenomena, are other
crucial features of this picture.

The main question of interest is how many of these such remarkable and new features
survive the descent to finite dimensions. The mean field, in the case of usual, non-disordered
systems, gives very good hints about the finite-dimensional case, but what about systems
which offer such a series of completely new phenomena? Recently, much activity has
been devoted to try and clarify this problem. As in many murky situations, Monte Carlo
simulations play an important role [3]. Computing corrections to the field theory of the
problem is also a difficult task, but progress is being made [4]. Here in the following we
will select the problem of ultrametricity, and try to understand how this feature is modified
when going from mean field to finite-dimensional, realistic systems.

The hierarchical solution of mean-field spin glasses admits a state structure endowed
with an ultrametric distance [5] (for a very good discussion of the problem, both introductory
and with more details of the subject, see [6]). Distances among states obey the ultrametric
inequality we have given before. Let us consider two spin configurations representative of
two given states [7]. One can define the squared distance of two spin configurations as

d2
α,β ≡

1

4qEAV

V∑
i=1

(mαi −mβi )2 =
1

2

(
1− qα,β

qEA

)
(1)
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where

qα,β ≡ 1

V

V∑
i=1

σαi σ
β

i

is the overlap of the two configurationsCα andCβ . Suchd2 takes the value 0 when the
mutual overlap is exactlyqEA (the overlap of two configurations in the same state, i.e. the
maximum allowed overlap), and the value 1 when the overlap is−qEA. This is the distance
we will always have in mind in this letter.

The main result one obtains in the mean-field concerns the disorder averaged probability
distribution for the probability distribution of three overlaps. We consider three equilibrium
configurations, 1, 2 and 3, of the spin systems (interacting by the same given realization of
the quenched couplings).q1,2, q2,3 andq1,3 are the mutual overlaps. By using the formalism
of replica symmetry breaking, one finds [5] that

PJ (q1,2, q2,3, q1,3) = 1
2P(q1,2)x(q1,2)δ(q1,2− q2,3)δ(q1,2− q1,3)

+{ 12{P(q1,2)P (q2,3)θ(q1,2− q2,3)δ(q2,3− q1,3)+ two permutations} (2)

wherex(q) ≡ ∫ q0 P(q ′) dq ′ gives the weight of equilateral triangles (the other three terms
represent triangles with the two equal edges longer than the different one).

Further work on the ultrametric features of the mean-field solution [8] has clarified the
robustness of the ultrametric behaviour. Numerical work on the subject is contained in
[9, 10].

We want to understand what happens in the case of finite-dimensional systems. It is
clear that the problem is a difficult one: finite-size effects are known to be severe, and the
use of a scaling analysis is mandatory.

We have used aconstrained Monte Carloprocedure. For each realization of the
quenched disordered couplings we have considered three configurations of the spin variables,
sayCα, Cβ andCγ . We have fixed the distance ofCα from Cβ and ofCβ from Cγ , i.e.
we have kept fixed to a constant value the overlapsqα,β ≡ q1,2 andqβ,γ = q2,3. A sensible
choice ofq1,2 andq2,3 is crucial for the method to give useful results. The valuesq1,2 and
q2,3 have been kept constant by forbidding spin updates that bring the overlapqα,β out of
the rangeq1,2 ± ε or the overlapqβ,γ out of the rangeq2,3 ± ε. For all the simulations
discussed in this paper we have usedε = 0.04. A systematic study of the choice of an
optimal value forε is contained in [11].

By using this procedure we are restricting the phase space: our numerical simulations
do not investigate the equilibrium properties of the full model, but only the sector where
in triplet of states two distances are fixed. To make the procedure consistent,q1,2 andq2,3

have to be chosen in support ofP(q) of the full model. A good choice of the constrained
value will make the ultrametric bound very different from the triangular bound, making the
difference among the two phase space structures as clear as possible.

We have studied the four-dimensional Edwards–Anderson model, with quenched
couplingsJ = ±1 with probability 1

2. The HamiltonianH = ∑
i,j σiJij σj contains a

sum over first neighbours. We have chosen the four-dimensional (as opposite to three-
dimensional) case because here we have a better understanding of the critical behaviour
[3, 10] (d = 4 is further from the lower critical dimension, and the critical behaviour is
clearer). We have been working atT = 1.4, i.e. T ' 0.7Tc, where we are already in the
broken phase andP(q) has a clear non-trivial structure, but we are still able to completely
thermalize the non-constrained system, at least on small lattices [11].

We have used lattices of volumeV = L4 with L = 3, 4, 5, 6, 7 and 8.L = 8 was the
maximum lattice size we felt sure we were able to thermalize. We have averagedPJ (q)
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over different realizations of the quenched disordered couplingsJ ; in both the numerical
experiments which we will describe in the following, the number of samplesNJ is a
maximum of 2000 for the smallest lattice (L = 3) and a minimum of 100 for the largest
lattice,L = 8 (with intermediateNJ values for the intermediate lattice sizes).

We will give more details about the thermalization of the samples, which is a crucial
issue for this kind of numerical experiment. We have been very careful about this point, and
all the data we present here have passed detailed thermalization tests [11]. For all lattice
sizes we have used an annealing schedule; starting from a random configuration we have
cooled the systems fromT = 2.4 down toT = 1.4 at steps1T = 0.1 (for the smaller
L values) or 0.2 (for the larger ones). At eachT value we have run from 25 000 sweeps
(L = 3) to 80 000 sweeps (L = 8). Once atT = 1.4, after the usual thermalization steps,
we have run from 500 000 (L = 3) to 800 000 sweeps (L = 8) for measuring.

Our main results have been obtained by fixing

qα,β ≡ q1,2 = qβ,γ = 2
5qEA ≡ q (3)

where byqEA we mean the infinite volume values as estimated for example in [10] (where
q = 0.54). This means we fixq = 0.21 for all the volume values we investigate. Under
this condition, the triangular inequality forces the measuredq, the third side of the triangle,
to obey

q > − 7
5qEA (4)

whereas an ultrametric distance would imply

q > 2
5qEA. (5)

It is clear that the two bounds are very different. Obviously in both cases in the infinite
volume limit the measuredq will be smaller thanqEA.

In figure 1 the vertical line on the left, atq ' −0.75, depicts the bound given from the
triangular inequality. The second vertical line, atq ' 0.21, depicts the ultrametric bound,
while the vertical line on the right, atqEA, is the upper bound for infinite volume. The
probability distributions of the measuredq value (the overlap among configurationCα and
configurationCβ , see earlier) are for the sixL values, fromL = 3 to L = 8. TheL = 3
P(q) is the one with the smaller peak, farthest to the right, that stops farthest to the left:
P(q) for increasingL values have higher peaks, and stop atq values closer to zero. It is
already clear that on small lattices the distribution is far from the triangular bound.

The probability for a measured distanceq not to be ultrametric (i.e. one minus the
normalized areaSU of theP(q) integrated inside the ultrametric bound) decreases rapidly
with lattice size. On aL = 8 lattice half of the configurations are ultrametric (and indeed
the big violation is from configurations withq > qEA, which we expect from normal Monte
Carlo runs to disappear in the continuum limit).

In figure 2 we plot the value of the integral

IL ≡
∫ qmin

−1
(q(L)− qmin)

2P(q) dq +
∫ 1

qMAX

(q(L)− qMAX )
2P(q) dq (6)

on a log–log scale. Hereqmin = q1,2 and qMAX = qEA. The lower points (I1) are for the
case we are discussing here, the upper ones for the case where we fixq1,2 6= q2,3 (see later).
The straight line is our very good best fit to a power behaviour, which gives

IL ' (−0.0001± 0.0005)+ (0.76± 0.03)L−2.21±0.04. (7)

The integral goes to zero in the infinite volume limit, as we would expect for an ultrametric
structure. It is remarkable that the asymptotic value is estimated to be so close to zero, and
that the estimated exponent is very close to the8

3 one expects from the results of [8].
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Figure 1. P(q) of the free overlap measured in the course of our constrained Monte Carlo
method as a function ofq, for L values ranging from 3 (lowest curve, stopping on the left
closest toq = 0) to L = 8 (highest curve, stopping on the left farthest fromq = 0).

Figure 2. The integralIL as a function ofL, on a log–log scale. The lower points are for the
case where we have fixedq1,2 = q2,3, the upper points whereq1,2 6= q2,3 (see the text).

A few comments are in order. There are two different and important effects in figure 1.
On the one side, the number of configurations with largeq (q > qV=∞EA ) decreases with
increasingL. These are the kind of finite-size effects that one normally studies. Such
finite-size effects are already known to be quite large in quenched disordered systems: even
for the SK model it is quite difficult to get a good numerical determination of the position
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of the peak ofP(q) in the infinite volume limit. We confirm this in our simulation. On
the other side (q < 0), things are different. Already on a very small lattice very few
configurations are allowed in the region that is allowed by the triangular inequality but
ultrametrically forbidden. This region is systematically reduced when increasing the lattice
size (it is basically halved when going fromL = 3 to L = 8).

We have also fitted the position of the peak ofP(q), q(∞)MAX with anL-dependent power
law. Our best fit is very good and gives

q
(L)

MAX = (0.31± 0.09)+ (0.85± 0.03)L−0.59±0.15 (8)

with a value ofq(∞)MAX just in the centre of the allowed ultrametric region.

Figure 3. The three curves (basically coinciding in the plot) are forP(q) in the first, second
and last third of the run (after the annealing scheme described in the text),L = 5, 100 samples.

Figure 4. As in figure 1, but forq1,2 = 4
5qEA andq2,3 = 1

5qEA.
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These results look very positive. On the lattice sizes that one can equilibrate with
a numerical simulation (in a sector of the phase space), which took a few months of
workstation time, one clearly sees the increasing domination of ultrametric sample couples.
Obviously we do not know whether in the infinite volume limit there will be a completely
ultrametric structure (we do not havea priori reasons to be sure of this) or if ultrametricity
will be realized on finite-dimensional spin glasses only as a dominance of states close to
ultrametric behaviour: certainly, we show here that the ultrametric sector of the phase space
is very important.

Maybe the most important problem we are detecting is the one of large finite-size effects.
This was already known, and we confirm it here: for example,q

(L)

EA converges only very
slowly to q(∞)MAX .

Thermalization is a key problem. In constrained dynamics like the one we are using it is
very difficult to ascertain thermalization. The usual criterion of checking that the dynamical
Pd(q) (i.e. where the overlap is defined from limt1→∞ σ(t)σ (t + t1)) should coincide with
the equal timePe(q) (where the overlap is from the evolution of two different systems,
i.e. from σ(t)τ (t)) is not useful here (since in our constrained Monte Carlo method we do
not have an equivalent dynamical quantityPd(q) to compare with). Also the symmetry
σ →−σ is not a good symmetry here, and the symmetry ofP(q) cannot be used to check
thermalization. Because of this we have tried to stay on the very safe side. In figure 3 we
plot P(q) for L = 5 (100 samples) for the first, second and third MC sweeps (after the
annealing schedule). The three curves are basically identical, making us confident that we
have no thermalization problems.

We have also analysed a different situation, in which we have setq1,2 6= q2,3. In
this case we have used runs of length similar to those for the previous case, a similar
number of samples, the sameL values andT = 1.4. We have fixedq1,2 = 4

5qEA and
q2,3 = 1

5qEA. In this case an ultrametric behaviour implies that, in the infinite volume limit
P(q) = δ(q − 1

5qEA), centred at1
5qEA ' 0.10. We report in figure 4 theP(q) for this

situation. A power fit for the position of the peak in the infinite volume limit gives us a
preferred valueq(∞)MAX = (0.10± 0.03), right on the ultrametric point. Also in this case
we obtain a strong indication of the presence of ultrametric features in the state space of
finite-dimensional spin glasses.

In figure 2 we also plot the value of the integralIL for this second case (I2). Here
qmin = qMAX is the location where we expect a delta function to be built in the infinite
volume limit, and the integral just goes from−1 to 1. The straight line is again the best fit
to a power behaviour, which gives

IL ' (−0.000± 0.002)+ (1.95± 0.08)L−1.95±0.04. (9)

Here the integral also seems to be tending to zero in the infinite volume limit.

We are grateful to Felix Ritort for sharing with us some ideas about this problem. We also
thank Peter Young for an interesting conversation.
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